IdeasCuriosas - Every Question Deserves an Answer Logo

In Mathematics / College | 2025-07-03

[tex]\frac{4}{6} \div \frac{3}{12}[/tex]

Asked by thabangd424

Answer (2)

Rewrite the division as multiplication by the reciprocal: 6 4 ​ ÷ 12 3 ​ = 6 4 ​ × 3 12 ​ .
Multiply the fractions: 6 4 ​ × 3 12 ​ = 18 48 ​ .
Simplify the fraction by dividing both numerator and denominator by their greatest common divisor (6): 18 48 ​ = 3 8 ​ .
The final result is 3 8 ​ ​ .

Explanation

Understanding the Problem We are asked to evaluate the expression 6 4 ​ ÷ 12 3 ​ . This involves dividing one fraction by another.

Rewriting as Multiplication Dividing by a fraction is the same as multiplying by its reciprocal. The reciprocal of 12 3 ​ is 3 12 ​ . Therefore, we can rewrite the expression as a multiplication: 6 4 ​ ÷ 12 3 ​ = 6 4 ​ × 3 12 ​

Multiplying the Fractions Now, we multiply the two fractions: 6 4 ​ × 3 12 ​ = 6 × 3 4 × 12 ​ = 18 48 ​

Simplifying the Fraction Next, we simplify the fraction 18 48 ​ . Both 48 and 18 are divisible by 6. Dividing both the numerator and the denominator by 6, we get: 18 ÷ 6 48 ÷ 6 ​ = 3 8 ​

Final Result The simplified fraction is 3 8 ​ . We can also express this as a mixed number: 3 8 ​ = 2 3 2 ​ Thus, the result of the division is 3 8 ​ or 2 3 2 ​ .


Examples
Fractions are used in everyday life, such as when cooking, baking, or measuring ingredients. For example, if a recipe calls for 4 3 ​ cup of flour and you only want to make half the recipe, you need to divide 4 3 ​ by 2, which is the same as multiplying by 2 1 ​ . This gives you 4 3 ​ × 2 1 ​ = 8 3 ​ cup of flour. Understanding how to divide fractions is essential for adjusting recipes and other real-world measurements.

Answered by GinnyAnswer | 2025-07-03

To divide the fractions 6 4 ​ ÷ 12 3 ​ , we multiply by the reciprocal of the second fraction, resulting in 18 48 ​ . Simplifying this gives 3 8 ​ or 2 3 2 ​ . Thus, the final result is 3 8 ​ .
;

Answered by Anonymous | 2025-07-04