( 1 ) r an g e : { 2 , 4 , 6 } ⇒ A n s . C ( 2 ) f u n c t i o n : {( 1 , 2 ) ; ( 2 , 2 ) ; ( 3 , 2 ) ; ( 4 , 2 )} ⇒ A n s . D ( 3 ) f ( 4 ) = 2 − 3 ⋅ 4 = 2 − 12 = − 10 ⇒ A n s . C ( 4 ) d i rec t : y = a x ⇒ y = 3 1 x ⇒ A n s . B ( 5 ) f ( x ) = a x an d f ( 4 ) = 12 . ⇒ 12 = a ⋅ 4 ⇒ a = 3 ⇒ f ( x ) = 3 x ⇒ A n s . ( ?)
( 6 ) f ( x ) = a x 2 an d f ( 2 ) = 48 . ⇒ 48 = a ⋅ 2 2 ⇒ a = 48 : 4 = 12 ⇒ f ( x ) = 12 x 2 ⇒ A n s . C ( 7 ) in v erse l y : f ( x ) = x a an d f ( 2 ) = 4 . ⇒ 4 = 2 a ⇒ a = 4 ⋅ 2 = 8 ⇒ y = x 8 ⇒ A n s . B
The range of the relation is {2, 4, 6} (C). The function is {(1, 2), (2, 2), (3, 2), (4, 2)} (D). For f ( 4 ) , the result is -10 (C). The direct linear variation is y = 3 1 x (B). The quadratic equation is y = 12 x 2 (C), and the inverse variation is y = x 8 (B).
;