x 3 + 3 x 2 − x − 3
x 2 ( x + 3 ) − x − 3
x 2 ( x + 3 ) − ( x + 3 )
( x + 3 ) ( x 2 − 1 )
x3 + 3x2-x-3=0 x2(x+3)-(x+3)=0 (x2-1)(x+3)=0 x2-1=0 (x-1)(x+1)=0 x=1 x=-1
x+3=0 x=-3
To factor the expression x 3 + 3 x 2 − x − 3 , we can group the terms, factor out common terms, and further reduce the expression. The final factored form is ( x + 3 ) ( x − 1 ) ( x + 1 ) . This demonstrates the use of grouping and recognizing patterns such as the difference of squares.
;