IdeasCuriosas - Every Question Deserves an Answer Logo

In Mathematics / Middle School | 2014-06-11

A particular circle in the standard (x, y) coordinate plane has an equation of \((x - 5)^2 + y^2 = 38\). What are the radius of the circle, in coordinate units, and the coordinates of the center of the circle?

| Radius | Center |
|--------|--------|
| F. 38 | (5, 0) |
| G. 19 | (5, 0) |
| H. 38 | (5, 0) |
| J. 38 | (-5, 0)|
| K. 19 | (-5, 0)|

Asked by BernardaGehrer

Answer (2)

t h e ce n t er o f t h e c i rc l e : ( a ; b ) t h e r a d i u s : r t h e n t h e c i rc l e : ( x − a ) 2 + ( y − b ) 2 = r 2 ========================= ( x − 5 ) 2 + y 2 = 38 ( x − 5 ) 2 + ( y − 0 ) 2 = ( 38 ​ ) 2 ce n t er : ( 5 ; 0 ) r a d i u s : 38 ​

Answered by Anonymous | 2024-06-10

The radius of the circle is 38 ​ units and the center is at the coordinates ( 5 , 0 ) .
;

Answered by Anonymous | 2024-10-09