IdeasCuriosas - Every Question Deserves an Answer Logo

In Mathematics / Middle School | 2014-07-20

Find the value of:

\[ 27x^{3}+8y^{3} \]

if \( 3x+2y = 20 \) and \( xy = \frac{14}{9} \).

Asked by Soham

Answer (2)

27 x 3 + 8 y 3 = ( 3 x ) 3 + ( 2 y ) 3 = ( 3 x + 2 y ) [( 3 x ) 2 − 3 x ⋅ 2 y + ( 2 y ) 2 ] = ( 3 x + 2 y ) [( 3 x ) 2 + 2 ⋅ 3 x ⋅ 2 y + ( 2 y ) 2 − 3 ⋅ 3 x ⋅ 2 y ] = ( 3 x + 2 y ) [( 3 x + 2 y ) 2 − 18 x y ] = ( ∗ ) − − − − − − − − − − − − − − − − − − − − − − − − − − − 3 x + 2 y = 20 x y = 9 14 ​ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ( ∗ ) = 20 ⋅ ( 2 0 2 − 19 ⋅ 9 14 ​ ) = 20 ⋅ ( 400 − 18 ⋅ 9 14 ​ ) = 20 ⋅ ( 400 − 2 ⋅ 14 ) = 20 ⋅ ( 400 − 28 ) = 20 ⋅ 372 = 7440
a 3 + b 3 = ( a + b ) ( a 2 − ab + b 2 ) ( a + b ) 2 = a 2 + 2 ab + b 2

Answered by Anonymous | 2024-06-10

The value of 27 x 3 + 8 y 3 is calculated using the identity for the sum of cubes and the given conditions, yielding a final result of 7440 . The process involves substituting and simplifying expressions related to the variables x and y .
;

Answered by Anonymous | 2025-05-29