Search
Questions in Grade High-school
[Answered] Indicate the values for which the rational expression is undefined, then state the domain: 5. [tex]$\frac{1-9 x^2}{3 x^2-x}$[/tex] 6. [tex]$\frac{y^2-2 y}{y^2-y-2}$[/tex]
[Answered] You have a restaurant bill of $61.45. If you are taxed 8 1/2 % and decide to tip your server 15 %, how much is your total? A. $75.65 B. $75.89 C. $76.32 D. $76.67
[Answered] What was the effect of the Pueblo Revolt? A. The Spanish abandoned the encomienda system and treated the native tribes with more tolerance. B. The Spanish continued the encomienda system and treated the native tribes with less tolerance.
[Answered] Evaluate the expression if [tex]$a=7, b=9$[/tex], and [tex]$c=4$[/tex]. [tex]$7(a b+c)$[/tex]
[Answered] Find $1 \frac{2}{3}+\left(-2 \frac{1}{2}\right)$. Show your work.
[Answered] Evaluate the expression for [tex]$f=-7$[/tex] and [tex]$g=-13$[/tex]. [tex]$f g+g=$[/tex]
[Answered] Can you think of any problems we talk about today—like fair elections, stopping unfair business practices, or protecting the environment—that are similar to what Progressives worked on? How are they alike or different?
[Answered] Which statements are true for the functions [tex]g(x)=x^2[/tex] and [tex]h(x)=-x^2[/tex]? Check all that apply. A. For any value of [tex]x[/tex], [tex]g(x)[/tex] will always be greater than [tex]h(x)[/tex]. B. For any value of [tex]x[/tex], [tex]h(x)[/tex] will always be greater than [tex]g(x)[/tex]. C. [tex]g(x)\ \textgreater \ h(x)[/tex] for [tex]x=-1[/tex]. D. [tex]g(x)\ \textless \ h(x)[/tex] for [tex]x=3[/tex]. E. For positive values of [tex]x[/tex], [tex]g(x)\ \textgreater \ h(x)[/tex]. F. For negative values of [tex]x[/tex], [tex]g(x)\ \textgreater \ h(x)[/tex].
[Answered] Identify whether the following relations are functions of [tex]$x$[/tex] and state the domain and range. \begin{tabular}{|c|c|} \hline[tex]$x$[/tex] & [tex]$y$[/tex] \\ \hline-2 & -6 \\ \hline-1 & -2 \\ \hline 0 & 0 \\ \hline 1 & 2 \\ \hline 2 & 6 \\ \hline \end{tabular} [tex]$\{(4,3),(5,3),(6,3),(7,3)\} \quad x=18 y^2$[/tex] function Domain: [tex]$[-2,2]$[/tex] Range: [tex]$[-6,6]$[/tex] Not function Domain: [tex]$(-4,4)$[/tex] Range: [tex]$(-5,5)$[/tex] Function Domain: [4,7] Range: b. [tex]$g(x)=\frac{3 x-2}{(x+6)(x-4)}$[/tex] c. [tex]$f(x)=\sqrt{x-2}$[/tex] e. [tex]$h(x)=\frac{x}{x^2-2 x}$[/tex] g. [tex]$y=\frac{1}{x^2+6}$[/tex] f. [tex]$f(x)=\frac{5}{x+4}-\frac{2}{x}$[/tex] h. [tex]$g(x)=\frac{\sqrt{8-x}}{(x+4)\left(x^2+1\right)}$[/tex] 2. Write the domain in interval notation of each function: a. [tex]$y=x^2+7$[/tex] Domain: Range: d. [tex]$y=\frac{1}{\sqrt{5-x}}$[/tex]
[Answered] [tex]\frac{x^3+3 y}{6}=\frac{z-y}{2}[/tex] Given [tex]$x=2$[/tex] and [tex]$y=3$[/tex], solve for [tex]$z$[/tex].
« Prev
1
...
23
24
25
26
27
...
3094
Next »