IdeasCuriosas - Every Question Deserves an Answer Logo

Questions in mathematics

[Answered] Which statements accurately describe the function $f(x)=3(\sqrt{18})^x$ ? Select three options. The domain is all real numbers. The range is $y>3$. The initial value is 3. The initial value is 9. The simplified base is $3 \sqrt{2}$.

[Answered] Consider the function [tex]$f$[/tex]. [tex]$f(x)=\left\{\begin{array}{ll}\left(\frac{1}{3}\right)^x-1, & x \leq 0 \\ 3^x-2, & x \textgreater 0\end{array}\right.$[/tex] Complete the table of values for function [tex]$f$[/tex], and then plot the ordered pairs on the graph. | x | -2 | -1 | 0 | 1 | 2 | |---|---|---|---|---|---| | f(x) | | | | | |

[Answered] Add. $6 \frac{1}{3}+4 \frac{3}{4}+3 \frac{7}{12}=$ A. $14 \frac{7}{8}$ B. $13 \frac{11}{12}$ C. $13 \frac{2}{3}$ D. $14 \frac{2}{3}$

[Answered] $y-1=\frac{1}{2}(x+2)$

[Answered] A sequence is defined by the recursive function [tex]f(n+1)=f(r)-2[/tex]. If [tex]f(t)=10[/tex], what is [tex]f(3)[/tex]?

[Answered] Arrange the numbers 1 to 5 in the white squares so that the total of the row is the same as the total of the column. How many different ways are there of doing this? What do you notice about the different ways of solving this problem?

[Answered] Which linear inequality is [tex]3 x+4 y>8[/tex] re-written in slope intercept form? a. [tex]y>-\frac{3}{4} x+2[/tex] b. [tex]y>\frac{3}{4} x+2[/tex] c. [tex]x>-\frac{4}{3} x+\frac{8}{3}[/tex] d. [tex]x>\frac{4}{3} x+\frac{8}{3}[/tex]

[Answered] Given $u =\langle 1,3\rangle, v =\langle 2,1\rangle$, and $\cos (\theta)=\frac{\sqrt{2}}{2}$, where $\theta$ is the angle between the vectors, what is the scalar projection $u _{ v }$ and the dot product $u \cdot v$ ? A. $u _{ v }=1.41$ and $u \cdot v =4.47$ B. $u _{ v }=2.24$ and $u \cdot v =5.00$ C. $u _{ v }=2.24$ and $u \cdot v =7.07$ D. $u _{ v }=7.07$ and $u \cdot v =15.81$

[Answered] Factor $x^3-4 x^2+7 x-28$ by grouping. What is the resulting expression? A. $\left(x^2-4\right)(x+7)$ B. $\left(x^2+4\right)(x-7)$ C. $\left(x^2-7\right)(x+4)$ D. $\left(x^2+7\right)(x-4)$

[Answered] $\frac{13 \times 5^b-25 \times 5^{b-2}}{5^{b+2}-5^{b+1}}=\frac{3}{5}$