Search
Questions in mathematics
[Answered] Consider these quadratic expressions: A. $-3 x^2+11 x-3$ B. $11 x^2-x+10$ C. $4 x^2+27 x-28$ D. $-3 x^2+11 x+31$ For each polynomial operation, write the letter that corresponds to the resulting expression from the list. $\left(5 x^2+2 x+1\right)+\left(6 x^2-3 x+9\right)$ is equivalent to expression $\square$ . $\left(-3 x^2+6 x-12\right)+(5 x+9)$ is equivalent to expression $\square$ $(8 x+16)-\left(3 x^2-3 x-15\right)$ is equivalent to expression $\square$ . $\left(5 x^2+23 x-7\right)-\left(x^2-4 x+21\right)$ is equivalent to expression $\square$ .
[Answered] Which row of the table reveals the [tex]$x$[/tex]-intercept of function [tex]$f$[/tex]?
[Answered] Add: $\left(8 p^4-6 q\right)+\left(-2 p^4\right)$
[Answered] Pn = n(3n-2)/2 Tn = n(n+1)/2
[Answered] [tex]\frac{5}{21}[/tex][tex]\frac{-3}{5}[/tex]
[Answered] Match each inequality to its solution. a. 1. [tex]$-3 x\ \textgreater \ -36$[/tex] b. 2. [tex]$3+5\ \textgreater \ 23$[/tex] c. 3. [tex]$1+7 n \geq-90$[/tex]
[Answered] 5. $2\left[18-\left(5+3^2\right)+7\right]$
[Answered] Drag the tiles to the correct boxes to complete the pairs. Match each polynomial function with one of its factors. [tex] \begin{array}{ll} f(x)=x^3-3 x^2-13 x+15 & f(x)=x^4+3 x^3-8 x^2+5 x-25 \\ f(x)=x^3-2 x^2-x+2 & f(x)=-x^3+13 x-12 \end{array} [/tex] [tex] \begin{array}{ll} x-2 & \longrightarrow \\ x+3 & \longrightarrow \\ x+4 & \square \\ x+5 & \square \end{array} [/tex]
[Answered] Which statement best describes how to determine whether [tex]f(x)=x^3+5 x+1[/tex] is an even function? A. Determine whether [tex]-\left(x^3+5 x+1\right)[/tex] is equivalent to [tex]x^3+5 x+1[/tex]. B. Determine whether [tex](-x)^3+5(-x)+1[/tex] is equivalent to [tex]x^3+5 x+1[/tex]. C. Determine whether [tex]-x^3+5 x+1[/tex] is equivalent to [tex]-\left(x^3+5 x+1\right)[/tex]. D. Determine whether [tex](-x)^3+5(-x)+1[/tex] is equivalent to [tex]-\left(x^3+5 x+1\right)[/tex].
[Answered] Contestants in a cooking competition have flour available for use. The number of cups of flour available for use decreases by 8 cups every 6 minutes. There are 32 cups of flour to begin with. Use an inequality to show an appropriate domain for this situation. Enter your answers in the boxes. \{x \mid \square \leq x \leq \square\}
« Prev
1
...
69
70
71
72
73
...
3347
Next »